O.P.Code: 20CS0507

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 OPERATING SYSTEMS

(Common to CSE, CSM, CAD, CAI, CCC & CIC)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

	UNIT-I			
1	a Define System call, List different types of system calls.	CO1	L1	6M
	b Evaluate different types of system calls in operating system.	CO1	L5	6M
	OR			
2	a Differentiate monolithic kernel and microkernel.	CO1	L4	6M
	b Justify layered structure of an OS.	CO1	L6	6M
2	UNIT-II			

a Compute the average waiting time for the processes using non preemptive SJF scheduling algorithm.

CO ₂	L3	6M

Process	Arrival Time	Brust Time
P1	0	7
P2	2	4
Р3	4	1
P4	5	4
P5	3	4

b Give below Processes table, calculate the average waiting time for the CO2 L2 6M algorithms: First Come First Serve (FCFS)

Process	Arrival Time	Brust Time
P1	0	7
P2	2	4
P3	4	1
P4	5	4
P5	3	4

OR

4 a Explain the Structure of user level thread and kernel level thread.

CO2 L4 6M

b List the Advantages of ULT and KLT.

CO2 L1 6M

		UNIT-III			
5	а	Summarize between Deadlock Detection and Recovery.	CO ₄	L2	6M
	•••	Explain Banker's Algorithm.	CO ₄	L2	6M
		OR			
6	a	Construct Dinning Philosophers Problem.	CO ₄	L6	6M
-		Develop Readers Writer Problem.	CO ₄	L6	6M
		UNIT-IV			
7	a	List different types of page replacement algorithms with examples.	CO ₅	L1	6M
•	b	Consider the following reference string	CO ₅	L5	6M
	D	7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1. Assume there are three frames.			
		Apply LRU replacement algorithm to the referencesting above and find			
		out how many page faults are produced. Illustrate the LRU page			
		replacement algorithm in detail and also two feasible implementations of			
		the LRU algorithm.			
		OR			
8		Explain about contiguous memory allocation in memory management.	CO5	L2	8M
0	a		CO5	L1	4M
	b	Write short notes on paging.	COS	22	****
		UNIT-V	000	т.	103/
9	Ju	stify free space management in Operating System.	CO6	L6	12M
	OR CO.				
10		Define Authentication. explain types of authentications.	CO6	L1	6M
	b	What is a password, explain about its types.	CO ₆	L1	6M

*** END ***